skip to main content


Search for: All records

Creators/Authors contains: "van Montfrans, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One significant barrier to broadening participation in engineering and recruiting future engineers is the pervasive lack of understanding or even misunderstanding of what engineering is and what engineers do. The challenges to broadening participation in engineering are further complicated as underrepresented groups often report constructs, such as cultural milieu and outcome expectations, as more important than interest in influencing career choices. Addressing such issues is difficult and single exposure interventions are unlikely to make engineering careers seem more relevant or attainable for most students. More sustainable interventions, designed to (1) challenge misperceptions and create relevant conceptions of engineering; (2) maintain and expand situational interest; and, (3) integrate with individual interests, values, and social identities, appear to hold more promise for creating significant change. As a possible means of developing more sustainable interventions, our ITEST project partners researchers, teachers, and local industry representatives in creating a series (approximately 6 across an academic year) of engineering-related learning activities for middle school children in three school systems in or near rural Appalachia. Across the first year of implementation, we involved nine teachers, six people working at three different companies and more than 500 students with a series of activities in each classroom. To examine the impact of our project, we are using mixed methods, including interviews, surveys, classroom observations, and classroom artifacts gathered from multiple project stakeholders, to answer the following research questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? Our findings to date offer insights across all research questions and have important implications for stakeholders hoping to raise awareness of engineering among youth, particularly in rural areas. 
    more » « less
  2. Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us to reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints. 
    more » « less